Math. 350-01
Fall, 2013
R. B. Kearfott

Third Exam Answers

Monday, October 21, 2013

1. Using 10 meters/second/second as the acceleration of gravity, 10 kg corresponds to $10(10)=100$ Newtons of force. Thus, the spring constant is

$$
k=100 / 0.40=225 \text { Newtons } / \text { meter } .
$$

The equation of motion is thus

$$
10 y^{\prime \prime}+250 y=0, \quad \text { with } \quad y(0)=.5, \quad y^{\prime}(0)=.25
$$

Dividing the differential equation by 10 gives

$$
y^{\prime \prime}+25 y=0
$$

with characteristic equation

$$
r^{2}+25=0, \quad \text { with solutions } r= \pm 5 i
$$

Thus, the general solution to the differential equation is

$$
y(t)=C_{1} \cos (5 t)+C_{2} \sin (5 t)
$$

We have

$$
y(0)=C_{1}=\frac{1}{2}, \quad \text { and } y^{\prime}(t)=-5 C_{1} \sin (5 t)+5 C_{2} \cos (5 t) \Longrightarrow y^{\prime}(0)=5 C_{2}=\frac{1}{4} \Longrightarrow C_{2}=\frac{1}{20} .
$$

2. $R=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{20}\right)^{2}} \approx 0.5025$ meters ≈ 50 centimeters, and, since both C_{1} and C_{2} are positive,

$$
\delta=\arctan \left(\frac{1}{20} / \frac{1}{2}\right)=\arctan (0.1) \approx 0.0997 \text { radians, }
$$

so

$$
y(t) \approx 0.5025 \cos (5 t-0.0997) \quad \text { meters. }
$$

Thus, the natural frequency is $\omega=5$ radians per second, the period is $2 \pi / 5 \approx 1.26$ seconds, the amplitude (maximum deviation from the resting position) is about $R \approx 50$ centimeters, and the phase shift is $\delta \approx 0.0997$ radians.

Note: It is more accurate (and indeed is also correct) if 9.8 meters per second per second is used as the acceleration of gravity. However, the numbers are not as simple then.

