Math. 350-01
Fall, 2013
R. B. Kearfott

Fifth Exam

Wednesday, November 20, 2013
This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner.

- Use the supplied table of Laplace transforms to solve

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=1,
$$

where

$$
g(t)=\left\{\begin{array}{lll}
0 & \text { for } \quad 0 \leq t<\pi \\
1 & \text { for } & \pi \leq t<2 \pi \\
0 & \text { for } & t \geq 2 \pi
\end{array}\right.
$$

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4	

2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
Sec. 6.1; Ex. 5
3. $t^{n}, n=$ positive integer
$\frac{n!}{s^{n+1}}, \quad s>0$
Sec. 6.1; Prob. 27
4. $t^{p}, \quad p>-1$
5. $\sin a t$
6. $\cos a t$
7. $\sinh a t$
8. $\cosh a t$
9. $e^{a t} \sin b t$
10. $e^{a t} \cos b t$
11. $t^{n} e^{a t}, \quad n=$ positive integer
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
14. $e^{c t} f(t)$
15. $f(c t)$
$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
17. $\delta(t-c)$
18. $f^{(n)}(t)$
19. $(-t)^{n} f(t)$ \qquad
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$
Sec. 6.2; Prob. 28
