Final Exam

Thursday, December 12, 2013, 2:00PM to 4:30PM
This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. You may keep this question sheet when you leave.

1. An object weighing 288 pounds is supported by a spring. When the object is placed on the spring, the spring is pressed down 6 inches. A large bump to the system moves the object down. When the object is down 1 ft . from its resting position, it is observed to have an upward velocity of 8 $\mathrm{ft} . / \mathrm{sec}$. at which time it comes to rest (at time $t=0$), before starting to oscillate.
(a) Write down a function giving the location $y(t)$ of the object at time $t \geq 0$.
(b) Calculate the natural frequency ω, period T, amplitude R, and phase shift δ of the mass' oscillations, where the oscillation is of the form

$$
y(t)=R \cos (\omega t-\delta)
$$

In your calculations, if the acceleration of gravity is needed, use 32 feet per second per second to approximate the acceleration due to gravity.
2. Consider the initial value problem

$$
y^{\prime \prime}+x^{2} y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(a) Write down a recursion relation for the coefficients a_{n} of the power series solution

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

(b) Write down the terms up to and including the x^{4} term for the solution to the initial value problem.
3. Use the supplied table of Laplace transforms to solve

$$
y^{\prime \prime}+5 y^{\prime}+4 y=2 \delta(t-5), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4	

2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
Sec. 6.1; Ex. 5
3. $t^{n}, n=$ positive integer
$\frac{n!}{s^{n+1}}, \quad s>0$
Sec. 6.1; Prob. 27
4. $t^{p}, \quad p>-1$
5. $\sin a t$
6. $\cos a t$
7. $\sinh a t$
8. $\cosh a t$
9. $e^{a t} \sin b t$
10. $e^{a t} \cos b t$
11. $t^{n} e^{a t}, \quad n=$ positive integer
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
14. $e^{c t} f(t)$
15. $f(c t)$
$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
17. $\delta(t-c)$
18. $f^{(n)}(t)$
19. $(-t)^{n} f(t)$ \qquad
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$
Sec. 6.2; Prob. 28
