Final Exam

Monday, December 3, 2007, 7:30AM to 10:00AM
This exam is closed book. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. Each entire problem is worth 20 points. You may keep this exam sheet upon leaving.

1. Find the terms up to and including the appropriate degree- 5 term of the solution to the initial value problem:

$$
y^{\prime \prime}-y^{\prime}=e^{x}, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

2. Find the terms up to and including the appropriate degree- 5 term of the solution to the initial value problem:

$$
x y^{\prime}-2 y=0, \quad y(-1)=1
$$

3. In this problem, refer as necessary to the table in Figure 1. Solve problem 1 by using Laplace transforms.
4. Solve problem 1 by using the method of undetermined coefficients.
5. Solve the following problem by using methods appropriate for first-order linear differential equations.

$$
y^{\prime}+y / x=2, \quad y(1)=1
$$

TABLE 6.2.1 Elementary Laplace Transforms

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4
2. $e^{a t}$	$\frac{1}{s-a}, \quad s>a$	Sec. 6.1; Ex. 5
3. $t^{n}, n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$	Sec. 6.1; Prob. 27
4. $t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$	Sec. 6.1; Prob. 27
5. $\sin a t$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$	Sec. 6.1;Ex. 6
6. $\cos a t$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$	Sec. 6.1; Prob. 6
7. $\sinh a t$	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$	Sec. 6.1; Prob. 8
8. $\cosh a t$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$	Sec. 6.1; Prob. 7
9. $e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$	Sec. 6.1; Prob. 13
10. $e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$	Sec. 6.1; Prob. 14
11. $t^{n} e^{a t}, \quad n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$	Sec. 6.1; Prob. 18
12. $u_{c}(t)$	$\frac{e^{-c s}}{s}, \quad s>0$	Sec. 6.3
13. $u_{c}(t) f(t-c)$	$e^{-c s} F(s)$	Sec. 6.3
14. $e^{c l} f(t)$	$F(s-c)$	Sec. 6.3
15. $f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$	Sec. 6.3; Prob. 19
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$	Sec. 6.6
17. $\delta(t-c)$	$e^{-c s}$	Sec. 6.5
18. $f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	Sec. 6.2
19. $(-t)^{n} f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 28

Figure 1: From W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, eighth edition, Wiley, 2006.

