Final Exam

Monday, December 3, 2007, 7:30AM to 10:00AM

This exam is closed book. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. Each entire problem is worth 20 points. You may keep this exam sheet upon leaving.

1. Find the terms up to and including the appropriate degree-5 term of the solution to the initial value problem:

$$y'' - y' = e^x$$
, $y(0) = 0$, $y'(0) = 1$.

2. Find the terms up to and including the appropriate degree-5 term of the solution to the initial value problem:

$$xy' - 2y = 0$$
, $y(-1) = 1$.

- 3. In this problem, refer as necessary to the table in Figure 1. Solve problem 1 by using Laplace transforms.
- 4. Solve problem 1 by using the method of undetermined coefficients.
- 5. Solve the following problem by using methods appropriate for first-order linear differential equations.

$$y' + y/x = 2$$
, $y(1) = 1$.

TABLE 6.2.1 Elementary Laplace Transforms

$f(t) = \mathcal{L}^{-1}{F(s)}$	$F(s) = \mathcal{L}\{f(t)\}\$	Notes
1. 1	$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
2. e ^{at}	$\frac{1}{s-a}$, $s>a$	Sec. 6.1; Ex. 5
3. t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
$4. t^p, \qquad p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6. cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Prob. 6
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8. cosh <i>at</i>	$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2 + b^2}, \qquad s > a$	Sec. 6.1; Prob. 13
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 14
11. $t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Sec. 6.1; Prob. 18
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
$14. \ e^{ct}f(t)$	F(s-c)	Sec. 6.3
15. <i>f</i> (<i>ct</i>)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	Sec. 6.6
17. $\delta(t-c)$	e^{-cs}	Sec. 6.5
18. $f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2
$19. \ (-t)^n f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 28

Figure 1: From W. E. Boyce and R. C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, eighth edition, Wiley, 2006.