Math. 350-01 Fall, 2006 R. B. Kearfott

Fourth Exam Wednesday, November 15

This exam is closed book. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. Each entire problem is worth 33 points, and 1 point is free.

In the following problems, refer as necessary to the table in Figure 1.

- 1. Write down the Laplace transform of $f(t) = te^t$. Show the work you did to obtain it.
- 2. Solve the following initial value problem using Laplace transforms.

$$y'' - y = e^{2t}$$
, $y(0) = 0$, $y'(0) = 0$.

3. Solve the following initial value problem using Laplace transforms. Make a rough graph of the solution.

$$y'' - y = u_1(t), \quad y(0) = 0, \quad y'(0) = 0,$$

where $u_1(t)$ is the unit step function with step at t = 1.

TABLE	6.2.1	Elementary Laplace Transforms	
-------	-------	-------------------------------	--

f(t)	$=\mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	Notes
1. 1		$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
$2. e^{at}$		$\frac{1}{s-a}, \qquad s > a$	Sec. 6.1; Ex. 5
3. t^n , $n =$	positive integer	$\frac{n!}{s^{n+1}}, \qquad s > 0$	Sec. 6.1; Prob. 2
$4. t^p, p$		$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Sec. 6.1; Prob. 2
5. sin at		$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6. cos <i>at</i>		$\frac{s}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Prob. 6
7. sinh <i>at</i>		$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8. cosh <i>at</i>		$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9. $e^{at} \sin bt$		$\frac{b}{(s-a)^2+b^2}, \qquad s > a$	Sec. 6.1; Prob. 13
10. $e^{at} \cos bt$		$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 14
11. $t^n e^{at}$, $n =$	= positive integer	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Sec. 6.1; Prob. 18
12. $u_c(t)$		$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
13. $u_e(t)f(t-t)$	c)	$e^{-cs}F(s)$	Sec. 6.3
14. $e^{ct}f(t)$		F(s-c)	Sec. 6.3
15. $f(ct)$		$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
$16. \int_0^t f(t-\tau)$	$g(\tau) d\tau$	F(s)G(s)	Sec. 6.6
17. $\delta(t-c)$		e^{-cs}	Sec. 6.5
18. $f^{(n)}(t)$		$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2
$\frac{19. (-t)^n f(t)}{2}$	en kristik ontere	$F^{(n)}(s)$	Sec. 6.2; Prob. 28

Figure 1: From W. E. Boyce and R. C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, eighth edition, Wiley, 2006.