MATH 304-02: CALCULUS III - DR. KEARFOTT TEST 1 SOLUTIONS

Problem 1. Write down an equation for the sphere with center $(1,-1,3)$ and radius 2.
Solution. In general the standard form equation for a sphere with radius r and center $\left(x_{0}, y_{0}, z_{0}\right)$ is given by: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$. Thus for this sphere our equation is:

$$
(x-1)^{2}+(y+1)^{2}+(z-3)^{2}=4 .
$$

Problem 2. Describe as precisely as possible the surface given by the equation $x^{2}+y^{2}+z^{2}+6 x+8 y=0$.

Solution. First we want to get this equation into standard form by completing the square:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}+6 x+8 y=0 & \Longleftrightarrow\left(x^{2}+6 x\right)+\left(y^{2}+8 y\right)+z^{2}=0 \\
& \Longleftrightarrow(x+3)^{2}+(y+4)^{2}+z^{2}=0+9+16 \\
& \Longleftrightarrow(x+3)^{2}+(y+4)^{2}+z^{2}=25 .
\end{aligned}
$$

It follows that we have a sphere of radius 5 centered at $(-3,-4,0)$.

Problem 3. Find
(a) the projection of $\langle 3,4,6\rangle$ onto $\langle 1,1,0\rangle$ and

Solution. Note that

$$
\begin{aligned}
\operatorname{proj}_{\langle 1,1,0\rangle}(\langle 3,4,6\rangle) & =\left(\frac{\langle 3,4,6\rangle \cdot\langle 1,1,0\rangle}{\langle 1,1,0\rangle \cdot\langle 1,1,0\rangle}\right)\langle 1,1,0\rangle \\
& =\left\langle\frac{7}{2}, \frac{7}{2}, 0\right\rangle
\end{aligned}
$$

(b) find the length of that projection.

Solution. Note that

$$
\begin{aligned}
\left\|\left\langle\frac{7}{2}, \frac{7}{2}, 0\right\rangle\right\| & =\sqrt{\left(\frac{7}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}} \\
& =\frac{7 \sqrt{2}}{2}
\end{aligned}
$$

Problem 4. Consider the points $(1,0,0),(0,1,0)$ and $(0,0,1)$
(a) Use the cross product to find the area of the triangle with these points as verticies.

Solution. Note that

$$
\begin{aligned}
\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{2}} & =\langle 0,1,0\rangle-\langle 1,0,0\rangle=\langle-1,1,0\rangle \\
\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{3}} & =\langle 0,0,1\rangle-\langle 1,0,0\rangle=\langle-1,0,1\rangle \\
\text { Area } & =\frac{1}{2}\left\|\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P} \mathbf{2} \times \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{3}}\right\| \\
& =\frac{1}{2}\left\|\operatorname{det}\left(\left[\begin{array}{ccc}
i & j & k \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\right)\right\| \\
& =\frac{1}{2}\|\langle 1,1,1\rangle\| \\
& =\frac{\sqrt{3}}{2} .
\end{aligned}
$$

(b) Find a unit normal vector to the plane in which the triangle lies.

Solution. Observe that $\langle 1,1,1\rangle$ is perpendicular to both $\boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{2}}, \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{3}}$, both of which line in the plane in question. It follows that

$$
\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle
$$

is a unit normal vector.

Problem 5. Show that the following lines intersect, and find their point of intersection.

$$
\begin{gathered}
x=t, \quad y=t, \quad z=t \\
x=2 u-1, \quad y=-u, \quad z=-u .
\end{gathered}
$$

Solution. We want the lines to intersect. It this is the case then

$$
\begin{aligned}
& \Rightarrow t=2 u-1, t=-u \\
& \Rightarrow 2 u-1=-u \\
& \Rightarrow 3 u=1 \\
& \Rightarrow u=\frac{1}{3} \\
& \Rightarrow t=-\frac{1}{3} .
\end{aligned}
$$

Thus our intersection (we have an intersection since we arrived at no contradictions) is the point

$$
\left(-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right) .
$$

Problem 6. Determine an equation for the plane perpendicular to the line through $(0,0,0)$ and $(1,1,1)$ and containing the point $(2,3,4)$

Solution. We want the norm of our plane to be parallel to $\langle 1,1,1\rangle$ (this implies that the plane is perpendicular to $\langle 1,1,1\rangle$). And we want to pass through $(2,3,4)$. This gives

$$
\begin{gathered}
1(x-2)+1(y-3)+1(z-4)=0 \\
\Longleftrightarrow \\
x+y+z=9 .
\end{gathered}
$$

Problem 7. Consider the spherical coordinate equation $\rho \sin \phi=1$.
(a) Write down a corresponding equation in rectangular coordinates. Solution. From the two triangles:

We get that:

$$
\begin{aligned}
\rho \sin \phi & =\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\sqrt{x^{2}+y^{2}}=1 \\
& \Rightarrow x^{2}+y^{2}=1
\end{aligned}
$$

is the given equation in rectangular coordinates.
(b) Precisely describe the graph of this equation.

Solution. This is a cylinder of radius one, centered at the origin, and with extrusion in

the z direction.

