Third Examination

Tuesday, November 9, 1999
Instructions: This exam should be done on your own paper. Your name should be on each sheet and on the back of the last sheet; the answers should appear written carefully and in order. If in doubt, show intermediate steps: Full credit may not be given, even for correct answers, unless work is arranged clearly and explained. This exam is open book, open notes, and computer-on. You may leave after handing in your exam paper, but be sure to check your answers carefully. Each part of each problem is worth 16 points, and 4 points are "free".

1. Consider the function $f(x)=x e^{x}$.
(a) Write down the degree-6 Taylor polynomial $T_{6}(x)$, centered at $x=0$, for f.
(b) Write down the error term. (Hint: The error term for f can be obtained by multiplying the error term for e^{x} by x.)
(c) Suppose $T_{6}(x)$ is to be used to approximate $x e^{x}$ for $x \in[0,0.2]$.
i. Is the polynomial an overestimate, an underestimate, or neither for the actual value of $x e^{x}$? Carefully explain why.
ii. Use your error term to give a bound on the possible value of $\left|f(x)-T_{6}(x)\right|$ for $x \in[0,0.2]$.
(d) Compute $f(0.2), T_{6}(0.2)$, and the actual error $f(0.2)-T_{6}(0.2)$. (That is, compute a numerical approximation to this, using your calculator or the computer. Compare this actual error to the error bound you obtained in part 1(c)ii.
2. Consider the power series

$$
\sum_{k=0}^{\infty} 5^{k}(x-1)^{k}
$$

(a) What is this series' radius of convergence?
(b) Based on that radius of convergence, give an interval of the form $[a, b]$ such that $x \in[a, b]$ implies the limit $\sum_{k=0}^{\infty} 5^{k}(x-1)^{k}$ exists.

