


method for underdetermined systems. The test results indicate that
this technique works well.

keywords: constrained optimization, underdetermined systems, generalized
inverse, feasibility

1 Introduction





feasible region is O(Ln�p





DO for I=1 to Ntries
1. Randomly generate a point in the search region.
2. Take the point in step 1 as an initial guess and call

a routine that iteratively finds an approximate feasible point.



3. If kX̃ � Xk � �domain maxfkXk; 1g, then
Return X̃; STOP

Else
X  � X̃; Go to step 1.

End if
End Algorithm 3
This technique has disadvantages. Inactive inequality constraints can

be ignored. But if inequality constraints are transformed to equality con-
straints, they will always be present in the system. Transforming to equality
constraints increases the number of independent variables and number of
bound constraints, so each step is more costly. Also, the entire approximate
feasible point scheme is often embedded into a global optimization algorithm,
and such algorithms are sometimes less efficient when the number of bound
constraints is too large.

Next, we present our algorithm that handles inequality constraints with-
out slack variables.

Algorithm 4 (For the step 2 of Algorithm 2)
1. If X is approximately feasible, then

Return X; STOP
End if

2. If maxfgf XReturn;f



2f) If the present system of inequality constraints is not empty
and maxfgj(X̃)jj = 1; 2; :::; q0g > �, then

Go to 2c
End if

End if
3. If kX̃ � Xk � �domain maxfkXk; 1g, then

Return X̃; STOP
Else

X  � X̃; Go to step 1.
End if

End Algorithm 4
Comparing with transforming to equality constraints, the technique of



5 Test Problems and Test Environment

5.1 The Test Set

The set of test problems is the same as that in [5]. Five problems were taken
from [3]. They were selected to be non-trivial problems with a variety of con-
straint types, as well as differing numbers of variables, inequality constraints,
equality constraints and bound constraints. The remaining three problems
were taken from [8]. They are relatively simpler. Each problem is identified
with a mnemonic, given below.

fphe1 is the first heat exchanger network test problem in [3, pages 63-66].

fpnlp3 is the third nonlinear programming test problem in [3, page 30].

fpnlp6 is the sixth nonlinear programming test problem in [3, page 30].

fppb1 is the first pooling-blending test problem in [3, page 59].

fpqp3 is the third quadratic programming test problem in [3, pages 8-9].

gould is the first test problem in [8].

bracken is the second test problem in [8].

wolfe3 is the third test problem in [8].

5.2 Implementation Environment

The algorithms in x2, x3 and x4 were programmed in the Fortran 90 envi-



The Sun Fortran 90 compiler version 1.2 was used on a Sparc Ultra model
140. Execution times were measured using the routine DSECND. All times are
given in terms of Standard Times Units (STU’s), defined in [2], pp 12–14.



Table 1: Results of the Three Methods

Random Feasible

Problem Method Var Eq’s Ineq’s Points Points All-time One-time

fphe1 pure-rand 16 13 0 10

6 0 57584.941



For all tests, the error tolerance for both equality and inequality con-
straints is 10�6.

With pure random search, we found no approximate feasible points for
problems fphe1, fppb1 and wolfe3 when we used 106 randomly generated






