Errata for
Classical and Modern Numerical Analysis:
Theory, Methods, and Practice
(for the first printing)

Azmy S. Ackleh, University of Louisiana at Lafayette
Edward J. Allen, Texas Tech University
R. Baker Kearfott, University of Louisiana at Lafayette
Padmanabhan Seshaiyer, George Mason University

February 27, 2010

Chapter 1

p. 2, in the proof of Theorem 1.2: There is an implicit assumption that
\[\int_a^b w(x)dx \neq 0, \] and the case \(\int_a^b w(x)dx = 0 \) is not considered. To have
the proof be complete, we need to observe that, if \(\int_a^b w(x)dx = 0 \), \(w(x) \)
must be identically equal to zero except on a set of measure zero. Thus,
\[\int_a^b f(x)w(x)dx = 0, \] and Theorem 1.2 is also true in this special case.

p. 15, second line of Example 1.12: It should be \(fl \) instead of \(f \ell \).

p. 16, Theorem 1.8, its proof, and the definition of condition number:
There is confusion between \(x^* \) and \(x \), and the formula for the condition
number should only depend on one of these. The following modifications
will reduce the confusion:

\[\left| \frac{f(x) - f(x^*)}{f(x)} \right| \approx \left| \frac{x f'(x)}{f(x)} \right| \frac{|x - x^*|}{x} \]

PROOF The linear Taylor approximation of \(f(x^*) \) about \(f(x) \) for small
values of \(|x - x^*| \) is given by \(f(x^*) \approx f(x) + f'(x)(x^* - x) \). Rearranging
the terms immediately yields the result.

We now define the condition number of a function \(f(x) \) as

\[\kappa_f(x) := \left| \frac{x f'(x)}{f(x)} \right| \]
p. 19, Table 1.1: Although only 23 bits are used for single precision and 52 bits are used for double precision, $t = 24$ for single precision and $t = 53$ for double precision, because the first digit is assumed to be 1.

p. 20, Table 1.2: ϵ_m for double precision should be $2^{-53} + 2^{-105} \approx 1.11 \times 10^{-16}$, and for single precision should be $2^{-24} + 2^{-45} \approx 5.96 \times 10^{-8}$.

p. 30, problem 2: What was defined was not exactly the traditional sinc function. The first part of Problem 2 should instead read:

Write down a polynomial $p(x)$ such that $|S(x) - p(x)| \leq 10^{-10}$ for $-0.2 \leq x \leq 0.2$, where

$$S(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Note: $\text{sinc}(x) = S(\pi x) = \sin(\pi x)/(\pi x)$ is the “sinc” function (well-known in signal processing, etc.).

p. 66, (2.27): Instead of

$$\frac{\hat{x}_k - x}{x_k - \alpha} \to 0 \text{ as } k \to \infty,$$

it should be

$$\frac{\hat{x}_k - \alpha}{x_k - \alpha} \to 0 \text{ as } k \to \infty.$$

Chapter 3

p. 101, lines 1 to 4 of the proof: The sentence should read: “The proof rests on the result in linear algebra that any square matrix is similar to an upper triangular matrix, i.e., given any n by n matrix A, there exists a unitary matrix P such that $PAP^{-1} = \Lambda + U$, where Λ is diagonal and U is upper triangular with zeros on the diagonal.

p. 141, in (3.32): There is an extra “.”.

p. 143, line above (3.39): There should be no closing parentheses.

p. 154, line -8: It should be “$i = 1, 2, \ldots, n$”, rather than “1 = 1, 2, \ldots, n”.

p. 182, problem 23: Since an “operation” could mean a fused multiply-add, the phrasing of this question may cause some confusion. Also, it is unclear how to achieve n^3 multiplications. (See the analysis in the instructor’s answer guide.) Here is a suggested replacement for the problem:

Compute the number of multiplications it takes to compute the inverse of a matrix according to the note on page 110 as $cn^3 + O(n^2)$. (That is, determine c.)

*Hint: c will be smaller if you take advantage of the fact that the right-hand-sides of the systems you are trying to solve are the unit vectors e_j.\)
p. 188, problem 55(b): For consistency of notation with the rest of the text, it should be “find k” and “X_k” rather than “find t” and “x_t.”

p. 188, problem 56(b): Add the following sentence before the parenthetical note: “Here, $y_0 = b$ and the x_i are computed according to the Full Orthogonalization Method described on page 173.”

p. 201, line 2: There should not be a parenthesis after $(1, 0, 0)^T$.

Chapter 4

p. 220, in (4.19): It should be $f^{(2n)}(\xi)$ instead of $f^{2n}(\xi)$.

p. 236, last row of Table 4.2: This row is incorrect: K and M so $f = p + KM$ are not readily apparent for least squares, although bounds can be computed from the theory in this section.

p. 237, line 13: It should be “\sin([0, 0.05])” instead of “\sin([0,0,05])”.

p. 237, lines 7, 10, 11, 14, 15, etc. and p. 238, line 2, etc.: The last term in (4.26) should be $-\frac{1}{5040}x^7 \cos(\xi)$, rather than $-\frac{1}{5040}x^7 \sin(\xi)$. As a consequence, the numbers in the other indicated lines are incorrect. The page should be as follows:

$$\sin(x) \in x - \frac{x^3}{6} + \frac{x^5}{5!} - \frac{1}{5040}x^7 \cos(\xi) \quad \text{for some } \xi \in [-0.1, 0.1]. \quad (4.26)$$

We can replace $\cos(\xi)$ by an appropriate interval, say, by $[1 - x^2/2, 1]$, to get a pointwise estimate; for example,

$$\sin(0.05) \in .05 - \frac{.05^3}{6} + \frac{.05^5}{120} - \frac{.05^7}{5040} [0.99875, 1] \subseteq [0.04997916927067, 0.04997916927068],$$

where the above bounds are mathematically rigorous. Here, K was evaluated at the point x, but, $\cos(\xi)$ was replaced by the aforementioned bounds. Similarly,

$$\sin(-0.01) \subseteq (-0.01) - \frac{(-.01)^3}{6} + \frac{(-.01)^5}{120} - \frac{(-.01)^7}{5040} [0.99995, 1] \subseteq [-0.009998333417, -0.0099998333416].$$

Thus, since we know $\sin(x)$ is monotonic for $x \in [-0.01, 0.05],$

$$[-0.0099998333417, 0.04997916927068]$$

represents a fairly sharp bound on the range $\{\sin(x) \mid x \in [-0.01, 0.05]\}$. Alternately, it may be more convenient in some contexts to evaluate K
and \(M \) over the entire interval, although this leads to a less sharp result. Using that technique, we would have

\[
\sin(0.05) \in 0.05 - \frac{0.05^3}{6} + \frac{0.05^5}{120} - \frac{0.05^7}{7!} [0.995, 1]
\]

\[
\subseteq 0.05 - \frac{0.05^3}{6} + \frac{0.05^5}{120} +
\]

\[
[-0.1550992063493, -0.154234871031748 \times 10^{-12}]
\]

\[
\subseteq [0.04997916927065, 0.04997916927071],
\]

and

\[
\sin(-0.01) \in (-0.01) - \frac{(-0.01)^3}{6} + \frac{(-0.01)^5}{5!} - \frac{(-0.01)^7}{7!} +
\]

\[
\frac{[-0.1, 0.1]^8}{8!} [-0.1, 0.1]
\]

\[
\subseteq (-0.01) - \frac{(-0.01)^3}{6} + \frac{(-0.01)^5}{5!} - \frac{(-0.01)^7}{7!} [0.995, 1]
\]

\[
\subseteq [-0.00999998333417, -0.00999998333416],
\]

thus obtaining (slightly less sharp) bounds

\[
[-0.00999998333417, 0.04997916927071].
\]

In general, substituting intervals into the polynomial approximation itself does not give sharp bounds on the range. For example,

\[
\sin([-0.01, 0.05]) \in ([-0.01, 0.05]) - \frac{([-0.01, 0.05])^3}{6} + \frac{([-0.01, 0.05])^5}{120}
\]

\[
- \frac{([-0.01, 0.05])^7}{7!} [0.995, 1]
\]

\[
\subseteq [-0.01002083333433, 0.0500016927084].
\]

pp. 238–249: Instances of “\(N \)” here occur in contexts where, previously, “\(n \)” occurred (for example, in Definition 4.12 on page 238, and in previous sections). In these pages, such instances of “\(N \)” should be changed to “\(n \)”.

p. 243: There should be a comma after the \((x - x_j - 2)^3\) in the second to the last line of (4.29).

p. 256: In Remark 4.43, it should be “Euler’s formula” instead of “Euler’s identity”.

p. 284, problem 1(d): it should be “\(\varphi_3 \equiv t^3 \)” , rather than “\(\varphi_3 \equiv x^3 \)”.

p. 284, problem 4: It should be “Use the Gram–Schmidt” instead of ”“Use Gram-Schmidt”.

4
p. 286, problem 13: Since the \(L_k(x) \) in this problem are the same as the \(\ell_k(x) \) in (4.8) on page 212, \(L_k \) should be changed to \(\ell_k \), for consistency. Similarly, in problem 15 on the same page, \(l_i \) should be \(\ell_i \) for consistency.

p. 287, problem 18: The polynomial should be of degree 3, so it should be referenced as \(P_3(x) \), not as \(P_2(x) \).

p. 289, problem 32: As printed, \(f \) is not uniquely defined at \(x = \pi \). Replace “0 \(\leq x \leq \pi \)” by “0 \(\leq x < \pi \”).

p. 290, problem 38: Part (a) is assumed. Thus, part (a) should be absent, and the problem should be to prove that \(\varphi \) is constant on \([0, 1)\). It is also helpful to assume some kind of continuity, such as \(\lim_{x\to 0^+} \varphi(x) = \varphi(0) \). (Otherwise, \(\varphi \) could be set to an arbitrary value at a countable number of points, and still satisfy the recursion relation and orthogonality conditions with respect to Lesbegue measure.)

Chapter 5

p. 321, problem 16: It should be

\[
x_{k+1} = -(A - 3I)^{-1}(A - 5I)^{-1}x_k,
\]

instead of

\[
x_{k+1} = -(A + 3I)^{-1}(A - 5I)^{-1}x_k,
\]

p. 326, formula on line 2: Instead of:

\[
f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{h}{2}f''(\xi(x)).
\]

it should be:

\[
f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi(x)).
\]

p. 331, line 17: It should be “\(\cos(v_q)' - v_p' \)” rather than “\(\cos(v_q)' - v_p \)”.

p. 332, line -8: It should be “\(\partial f/\partial x_i \)” instead of “\(df/dx_i \)”.

p. 332, lines -3 and -2: It should be “\(\partial f/\partial x_1 \)” and “\(\partial f/\partial x_2 \)” instead of “\(df/dx_1 \)” and “\(df/dx_2 \)”.

Chapter 6

p. 346, first line of Corollary 6.1: It should be “\(\{p_i\}_{i\geq 0} \)” instead of “\(\{p\}_{i\geq 0} \)”.

p. 349, line 2: It should be “\(z_j, 0 \leq j \leq m \)” instead of “\(z_j, 0 \leq j \leq n \)”.

5
\textbf{p. 349, Table 6.1:} The indexing on the α's and z's should go from 0 to m, rather than from 1 to $m + 1$, to be consistent with the rest of the text.

\textbf{p. 349, line 2 of Lemma 6.1:} It should be “of at most degree $2m+1$” instead of “of a most degree $2m + 1$”.

\textbf{p. 350, line -7:} It should be $f^{(2m+2)}(\xi)$ instead of $f^{2m+2}(\xi)$.

\textbf{p. 352, line -5:} It should be $\prod_{i=0 \atop i \neq j}^{m} (x_j - x_i)^2$ instead of $\prod_{i=0 \atop i \neq j}^{n} (x_j - x_i)^2$.

\textbf{p. 367, last line:} It should be “integrals over infinite intervals” instead of “in- tegrals over infinite integrals”.

\textbf{p. 377, problem 7:} The authors do not know a general closed-form formula for the n-th component in (6.14). A suggested rewriting of problem 7 is:

Compute the fourth and fifth components in (6.14), assuming order 4 Taylor arithmetic is to be used. Can a general formula be derived? Can a recursive routine be devised to compute the n-th term, without explicitly computing it by hand first?

Instructors can consult the solutions manual for an answer to this modified question.

\textbf{p. 377, problem 8:} There is a similar difficulty with this problem as with problem 7. It is suggested that the problem be replaced by:

Compute the components of the degree-4 Taylor object for $(u\nabla)^n$.

\textit{Project: Write a program that recursively computes a general coefficient for a degree N Taylor object for $(u\nabla)^n$}.

\textbf{p. 378, problem 15:} This problem is erroneously stated. As a counterexample to part (a), take $f(x) = x^{10}$, and $a = 10$. Then, $f(a) + f(-a) = 2 \cdot 10^{10}$, while $\int_{-1}^{1} f(x) dx = 2/11$, and the error bound is only $(10^3 - 10^2 + \frac{1}{2}) \cdot 90$.

\textbf{p. 379, line 1:} For consistency with the rest of the text, “Trapezoid rule” should be “trapezoidal rule”.

\section*{Chapter 7}

\textbf{p. 383, line 10:} Instead of “on page 482 in Section 8.1,” it should be “on page 482 in Section 8.7.”

\textbf{p. 419, paragraph beginning on line 6:} The second sentence is erroneous. It should read

A spring is “stiff” if its damping constant is large; in such a mechanical system, motions of the spring will damp out fast relative to the time scale on which we are studying the system.
instead of

A spring is “stiff” if its spring constant is large; in such a mechanical system, the spring will cause motions of the system that are fast relative to the time scale on which we are studying the system.

p. 433, line 4 of problem 16: It should be “determine β” instead of “determine β”.

p. 435, problem 24: (i) Method (i) Should read

\[y_{j+2} - 2y_{j+1} + y_j = 2h(f(t_{j+1}, y_{j+1}) - f(t_j, y_j)). \]

(iii) Method (iii) should read

\[y_{j+1} - y_j = hf(t_{j+1}, y_{j+1}). \]

Finally, the precise problem being solved is irrelevant to consistency and stability of the method, so the first sentence of the problem should be deleted.

Chapter 8

p. 443, line -13: It should be “G(x(k))” rather than “G(x^k)”.

p. 445, last line: It should be “Φ’(s)” rather than “Φ’(s)”.

p. 446, lines 6 and 8: the derivative signs in the Leibnitz notation should be partial derivative signs. That is, lines 6, 7, and 8 should read:

\[
G'(x) = \begin{pmatrix}
\frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\
\frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{3}x_2 \sin(x_1x_2) & \frac{1}{3}x_1 \sin(x_1x_2) \\
x_2 e^{-x_1x_2} & \frac{x_1}{20} e^{-x_1x_2}
\end{pmatrix}
\]

and

\[
\left| \frac{\partial g_1}{\partial x_1} \right| \leq \frac{1}{3}, \quad \left| \frac{\partial g_1}{\partial x_2} \right| \leq \frac{1}{3}, \quad \left| \frac{\partial g_2}{\partial x_1} \right| \leq \frac{e}{20} \quad \text{and} \quad \left| \frac{\partial g_2}{\partial x_2} \right| \leq \frac{e}{20}
\]

p. 448, line -3: it should be “A = A(x^*)” rather than “A = A(x)”.

p. 449, line 5: It should be “x ∈ S” rather than “x ∈ S”.

p. 451, line 16: In the displayed formula, there are two occurrences of “x^k” that should be “x^{(k)}”.
p. 480, first paragraph of 8.6.1: The first sentence should read

“In a homotopy method, one starts with a simple function $f(x), f : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ such that every point with $f(x) = 0$ is known, then transforms the function into $g(x), g : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ for which all points satisfying $g(x) = 0$ are desired.”

p. 485, first line of Exercise 27: It should be

“Suppose $f(x) = x^2 - 5x + 4, g(x) = (x - 2)(x + 2),”$

instead of

“Suppose $f(x) = (x - 2)(x + 2), g(x) = x^2 - 5x + 4$.”

Chapter 9

p. 517: The numbers on top of the nodes in Figure 9.6 are not correct.

p. 526, line 7: “Since $\varphi \in [0, 181]$” should be “Since $\varphi \in [0, 116]$”

p. 526, line 16: Remove the “=” from “$\varphi = \in [0, 41]$”

p. 526, line 17: It should be “Since $\varphi \in [0, 116]$” instead of “Since $\varphi \in [16, 106]$”

Chapter 10

pp. 543–544, and also Exercise 4 on page 567: The claim that Formula (10.21) is second order when $\alpha = \beta = 0$ is false. A counterexample is given in the Instructor’s Solution Manual for Exercise 4.

p. 544, last line: There is a misplaced comma. That is, “(10.25),” should be “(10.25),”.

p. 548, beginning of line 8: “since” should be “Since”.

p. 557, line 7: “we are obtain” should be “we obtain”.

pp. 567–568, Exercise 5: The reader is requested to prove

$$
\|Y - y\|_F^2 = \frac{1}{2} \int_0^1 (y'(x) - Y'(x))^2 dx \leq ch \max_{0 \leq x \leq 1} |y''(x)|.
$$

Instead, the reader should be requested to prove

$$
\|Y - y\|_F^2 = \frac{1}{2} \int_0^1 (y'(x) - Y'(x))^2 dx
$$

and

$$
\|Y - y\|_F \leq ch \max_{0 \leq x \leq 1} |y''(x)|.
$$
p. 569, Exercise 11: The reader should assume, as in Theorem 10.8 and Lemma 10.2, that \(|K| \leq M < 1\), and should also assume that \(K\) is symmetric, i.e. that \(K(s, t) = K(t, s)\). Additional clarification is given in the Instructor’s Solution Manual.

Appendix A

p. 571, second line of 1(c): An \(f(x)\) is missing at the end. That line should read:

\[
\min_{x \in [a,b]} f(x) \leq f(x_j) \leq \max_{x \in [a,b]} f(x)
\]

p. 574, first two lines of 7(b): There are two closing parentheses missing. That is, instead of

\[
\| (A + B)^{-1} - A^{-1} \| = \| (A + B)^{-1} (I - (A + B)A^{-1}) \|
\]

it should be

\[
\| (A + B)^{-1} - A^{-1} \| = \| (A + B)^{-1} (I - (A + B)A^{-1}) \|
\]