Errata for Classical and Modern Numerical Analysis: Theory, Methods, and Practice (for the second printing)

Azmy S. Ackleh, University of Louisiana at Lafayette Edward J. Allen, Texas Tech University
R. Baker Kearfott, University of Louisiana at Lafayette Padmanabhan Seshaiyer, George Mason University

September 3, 2013

Chapter 1

p. 8, formula above Section 1.2: It should be $\mathrm{k}^{4} \quad \mathrm{k}^{2} \quad 2 \mathrm{k} \quad 1$ instead of $\mathrm{k}^{2} \quad 2 \mathrm{k} \quad 1$. However, the conclusion remains valid, since the correct quantity is not bounded, either.
Example 1.10, page 13: It should be

```
(x+y)=0:1219 106 = (x+y)(1+
```

p. 119, equations (3.17):

Letting $g(z)=1, g(z)=z, g(z)=z^{2}$, and $g(z)=z^{3}$, and setting $w_{i}=$ $2_{i}=\left(\begin{array}{ll}b & a\end{array}\right) \quad$, we obtain the following nonlinear system:
Z_{1}
$1 \mathrm{dz} \quad[(\mathrm{i})-369(=)] \mathrm{T} / / \mathrm{F} 119.962651 .748 .9370 T \mathrm{~d}[(\mathrm{w})] / \mathrm{F} / \mathrm{F} 106.9738 T \mathrm{f} 7.132-1.494 \mathrm{~T}$ O[(d 1
p. 400, item 1 of Example 7.5: It should be

$$
y_{j}=y_{0}(1+(=) \Pi J / / F 119.9626 T-2032160 T d h(0) \mathrm{J} J / F 89.9626 T 11.552160 T d)
$$

and

$$
G(x)=\left(g_{1}(x)_{1}(x\right.
$$

